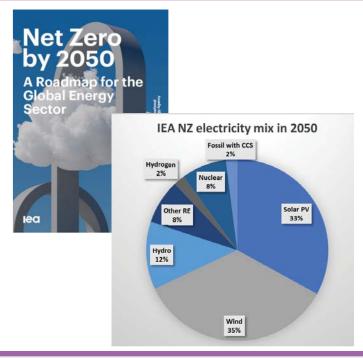


Global Trends in Nuclear Power:

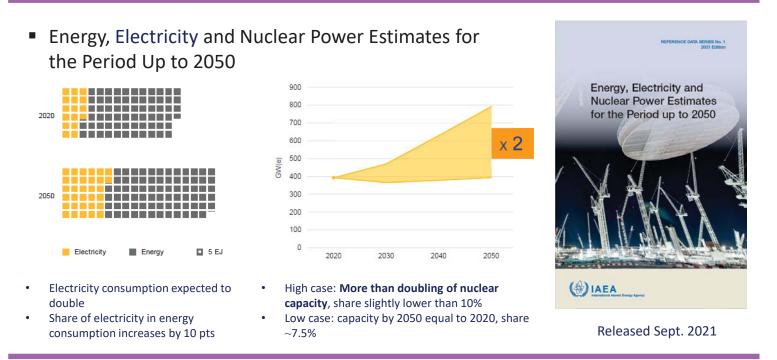
Advanced Reactors Including SMRs: Challenges and Opportunities for Increased Sustainability

Electricity generation still dominated by fossil fuels (>60%)

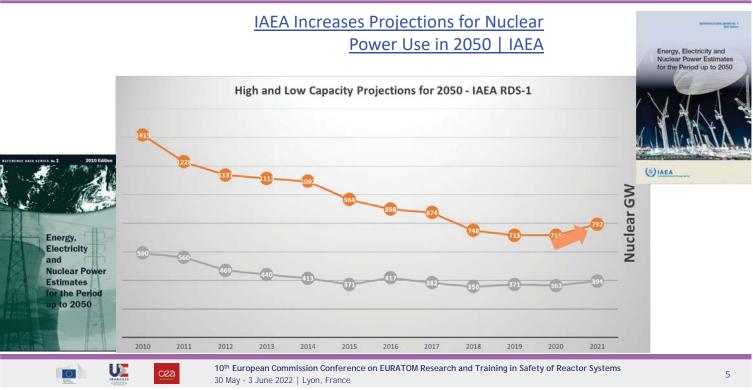


IEA Roadmap to Net Zero (May 2021)

- Very little fossil in the mix → roadmap is massive deployment of renewables + doubling of nuclear generation by 2050
- High level of electrification (demand x 2.5)
- Nuclear generation (x 2) share in electricity mix 10% to 8%
- Share of nuclear in heat 4%


U

cea

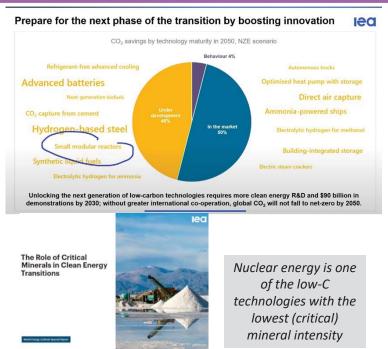

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

IAEA projections to 2050

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France 3

History of projections: 2021, one-off or the start of a trend?

IEA Roadmap to Net Zero


2 important caveats:

- Nearly half of the emissions reductions to 2050 come from technologies that are not yet commercialized → need to accelerate demonstration → market
 - For nuclear, this means the demonstration & commercialisation of advanced reactor technologies (and fuel cycles)
- 2. Issue of supply of critical minerals

cez

U

 More an issue for renewables (wind, solar) and grid and battery technologies than for nuclear power

Small Modular Reactor (SMR) Technology

Advanced Reactors that produce typically up to 300 MWe, built in factories and transported as Modules to sites for Installation as Demand arises

30 May - 3 June 2022 | Lvon, France

- Modular construction •
- Ability to fabricate major components of the nuclear steam supply system in a factory environment and ship to the point of use
- Limited on-site • preparation
- Substantially reduce the lengthy construction times
- Multi- module as per • energy demand

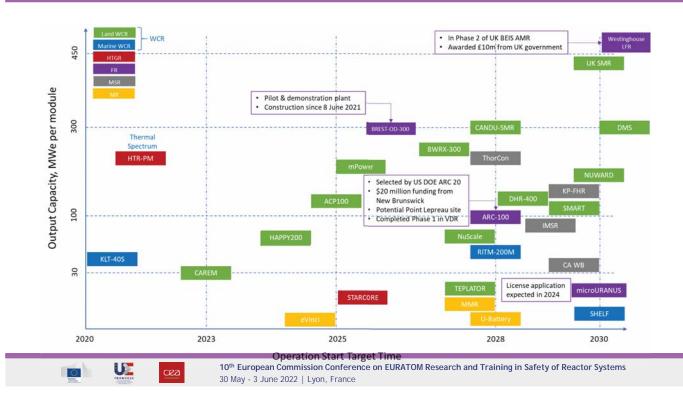
SMR – Deployment Horizon by 2030

SMRs at advanced stage:

- 1 in commercial operation
- 1 connected to grid

0

- 2 under construction
- 1 received SDA from U.S. NRC


Hainan province, scheduled comm operation by the end of **2026** nercia

NuScale received SDA issued by U.S.NRC in Sept. 2020. The first module is expected to be operational by mid-2029

SMR – Deployment Horizon by 2030

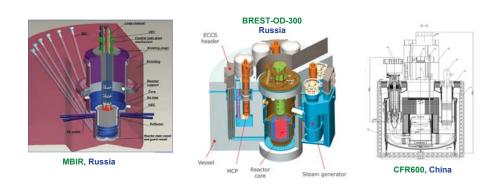
Microreactor – Designs

U

0

Six designs included in the IAEA SMR ARIS Booklet (2020 edition)							
Energy Well	MoveluX	U-Battery	AURORA	eVinci	MMR		
				0 000	F		
Design Status: Pre-conceptual design, neutronics, thermohydraulic and materials studies done	Design Status: Conceptual design, complete test without fuel, FOAK demo after 2030	Design Status: Conceptual design, VDR with CNSC	Design Status: Accepted combined license application by the US NRC	Design Status: Conceptual Design, vendor design review with CNSC	Design Status: Preliminary Design, vendor design review with CNSC		
Centrum výzkumu Řež, Czech Republic Fluoride HTR, Pool type Molten Salt FLiBe coolant 20 MWt / 8 MWe Forced circulation TRISO fuel Enrichment: ~ 15% No onsite refueling Refueling cycle: 84 months	Toshiba, Japan Heat-Pipe cooled Calcium-hydride moderated reactor 10 MWt / 4 MWe Natural circulation Silicide fuel, Hexagonal Enrichment: < 5% Continuous operation 100 m ² plant footprint	URENCO, UK HTGR 10 MWL / 4 MWe Forced helium circulation TRISO fuel (17-20% U235) Hexagonal FAs Enrichment: < 20% 5 EPFYs core life 30 year design life	 OKLO Inc., USA Liquid Metal Fast Reactor Liquid metal coolant, no moderator 4 MWt / 1.5 MWe U27 metal fuel (<20% U235) Refueling cycle: up to 20 years Design life: 20 years per deployment 	 Westinghouse, USA Heat Pipe cooled Metal hydride moderator TRISO or another encapsulation 7-12 MWt / 2-3.5 MWe per module Enrichment: 5-19.75% Refuel interval: 36+ months No onsite refuelling, Replace reactor approach Design life: 40 years 	 USNC, USA, Canada HTGR / micro-reactor / nuclear battery 15 MWt / 5 MWe Core Outlet Temp: 630°C FCM TRISO graphite, Hexagonal fuel block Enrichment: HALEU 19.75% Refuel interval: fuelled once during lifetime 		

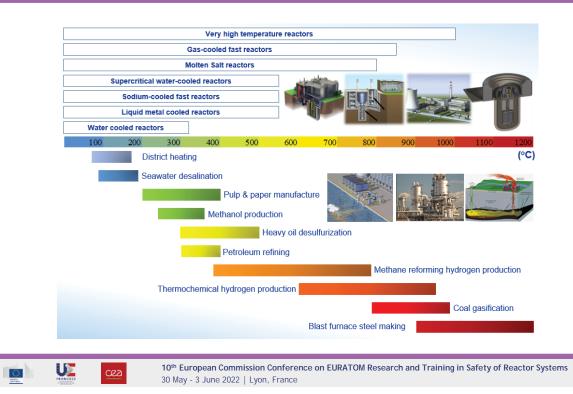
Fast Reactors in Operation & under Commissioning


Country	Name	Coolant	Purpose	Power (th/e) MW	Year (Op.)	Status
	BOR-60	sodium	experimental	60/10	1969	operating
Russia	BN-600	sodium	prototype	1470/600	1980	operating
	BN-800	sodium	commercial	2100/880	2015	operating
China	CEFR	sodium	experimental 65/20		2011	operating
India	FBTR	sodium	experimental	40/13	1985	operating
mula	PFBR	sodium	prototype	1250/500	(Est.) 2022	commissioning
Japan	JOYO	sodium	experimental	150/	1978	license renew

U 10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems cea 30 May - 3 June 2022 | Lyon, France

Fast Reactors under Construction

Country	Name	Coolant	Purpose	Power (th/e) MW	Year (Op.)	Status
Russia	MBIR	sodium	Experimental/MTR	150/50	~2028	construction
	BREST-OD-300	lead	demonstrator	700/300	~2026	construction
China	CFR600 x2	sodium	prototype	1500/600	~2023	construction (2 units)



U

0

	Fast Reactors under Development and Design								
	Country	Name	Type - Coolant	ATOCAOT		I. I.I.			
		BN-1200	SFR sodium		-				
	Russia	SVBR-100	LFR LBE	ПЦН-1 Механиски перегрузие					
		MOSART	MSR molten salt	Поворотные Промежуто-					
		CFR1000	SFR sodium	of Merenax (TTO)					
		CLFR-300	LFR LBE/lead	Колонна Страховоч-					
	China	CLEAR-M10A	LFR LBE	Напорный трубопрод		tere /			
		CLEAR-I	LFR LBE						
		CLEAR-M10D	LFR lead	Спорным Дитивная зана					
	India	FBR1 & 2	SFR sodium	Поддон Напорная какера	-	annon toba			
		ESFR	SFR sodium	9 Z					
	EU	ALFRED	LFR lead	BN-1200 Russia	CFR1000	ALFRED 125-250 MW(e)			
	EU	ALLEGRO	GFR helium		China	EU			
		MSFR	MSR molten salt	a للله الله الله الله الله الله الله الل	FTT				
	Belgium	MYRRHA	LFR-ADS LBE						
	France	ASTRID	SFR sodium (suspended)						
	R. of Korea	KALIMER-600	SFR sodium						
		PGSFR	SFR sodium (suspended)			Compact heat			
	UK/Italy	LFR-AS-200	LFR - Lead			Reactor coolant pump			
	UK/Sweden	SEALER-UK	LFR lead						
		Westinghouse LFR	LFR lead			vessel			
		NATRIUM	SFR sodium			Corr			
		VTR (PRISM)	SFR sodium						
	JSA	SSTAR	LFR lead (suspended)			Westinghouse LFR			
		MCSFR	MSR chloride salt	NEWCLEO's Small LFR	55 MW(e) SEALER-UK Sweden	550 MW(e) USA			
		EM2	GFR helium	UK	Gweden				
		KP-FHR	MSR fluoride salt	ssion Conference on EURATOM Research and Tra	aining in Safety of Reactor Syst	ems			
		LLC ARC-100	SFR sodium	Lyon, France					

Reactor Technologies for Non-electric Applications

Heat and H2: Prospects of using current fleet of NPPs

US DOE commits \$20M to create clean hydrogen from NP with Palo Verde project

Haiyang becomes first Chinese city to enjoy 'zero-carbon' heating with nuclear power

United Kingdom

UK Strategy lays out plans to use existing nuclear plants this decade for clean hydrogen production

Approved Nuclear Desalination Project at Madras

Kola nuclear power plant is building a hydrogen test facility

India

Bruce Power is exploring feasibility of using excess energy for hydrogen production

Atomic Power Station (PHWR), Kalpakkam 10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Heat and H2: Prospects of using advanced reactor technologies

Canada SMR Developers Focus on Process Heat Alberta's oil sands producer considers capitalizing heat from SMRs China ≻ HTR-PM: Feasibility study on the application and design of nuclear hydrogen and cogeneration in industrial sector Various SMRs designs (e.g. ACP100 SMR) for electricity production, heating, steam production or seawater Finland Low-temperature District Heating and Desalination Reactor H2 Japan HTGR cogeneration plant for hydrogen production \geq Poland HTGR for district heating; MMR for hydrogen production **Republic of Korea** SMR for desalination/ district heating Russia Floating SMRs for cogeneration, HTGR for hydrogen production \geq **United Kingdom** ≻ SMRs, AMRs for cogeneration and hydrogen production **United States** > Various SMR designs for hydrogen production, water desalination, district heating 10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems U cez 30 May - 3 June 2022 | Lyon, France

Challenges Facing Successful Deployment of SMR & Innovative Reactor Technologies

- Demonstration of Safety and Performance
 - Above all as far as the most "revolutionary" designs
- Demonstration of Economic Competitiveness
 - Modularization
 - Economies of Serial Production
 - Integration with other clean energy sources
- Harmonization and Standardization to enable the effective global deployment of standardized fleets of safe and secure advanced reactors:
 - Common industrial approaches (e.g. codes & standards, supply chain, etc.) by technology holders and users' requirements and criteria by operators
 - Harmonized regulatory approaches between national regulatory bodies, including a common set of internationally recognized requirements (*while maintaining national responsibilities*)
- Development of nuclear infrastructure for deployment
 - Embarking and expanding countries

 10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems

 30 May - 3 June 2022 | Lyon, France

17

IAEA Platform on SMRs and their Applications

Objective: Provide national governments, experts and regulators with integrated Agency-wide support on all aspects of SMR development, deployment and oversight

What?

U

O

- IAEA's internal governance to coordinate activities consistently with MSs needs and requests
- Single access point for MSs and stakeholders

U

cea

How?

- Develop medium-term strategy on SMR and its applications
- Create enabling environment and a portal to enhance internal as well as external communication

• Member Sates request for consistent, coordinated and optimized Agency support

Whv?

• Effective and efficient support to Member States, International Organizations and stakeholders willing to cooperate with the IAEA

SCORPION: 1st Release in July

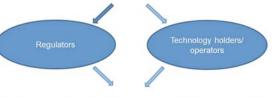
About SMR coordination and resource portal all and medium-sized or modular reactors are an option to fulfill the need for flexible power generation for a wider range of users and applications.

To support the work of SMRs in the agency, "SMR Coordination and Resource Portal for Information Exchange, Outreach and Networking (SCORPION)" is developed. This portal will serve as a centralized source of information for internal as well as external stakeholders with different levels of data/info access authorization.

IAEA Nuclear Harmonization & Standardization Initiative - NHSI

Regulatory Track

 Developing harmonized regulatory approaches between national regulatory bodies, including a common set of internationally recognized requirements, while maintaining national responsibilities for safety and security.


U

cea

Industrial Track

 Developing common industrial approaches by technology holders and users' requirements and criteria by operators, consistent with fair global competition, intellectual property rights protection, and not hampering innovation and continuous improvement.

Two separate, complementary tracks

IAEA as facilitator and integrator

Take Aways

- Nuclear has unique attributes to play a major role in the transition to Net Zero:
 - Only technology that can provide at scale low C electricity, heat and hydrogen
 - Reduced land footprint and use of critical minerals, much higher capacity factors
- It can complement renewables dispatchability, flexibility, security of supply and support low carbon H₂ production.
 - It can lower the costs of the transition to carbon neutrality.
 - Offers a **less risky pathway** to net zero (100% renewables would need extremely high deployment rates + massive storage capabilities + higher dependency on critical minerals)
- For nuclear to fulfill its full role *i.e. massive production of all major clean energy carriers* – consistently with net zero roadmap there is the **need to quickly advance design and demonstration of advanced reactor technologies, including SMRs and FRs**

10th European Commission Conference on EURATOM Research and Training in Safety of Reactor Systems 30 May - 3 June 2022 | Lyon, France

Hotei-san: "focus on the moon and not on the finger pointing to the moon..."

cea

U

IAEA intends to continue the conversation on nuclear energy's role in the energy transitions at the Ministerial Conference on Nuclear Power (October 2022) and COP27 (November 2022).

Contact: Stefano MONTI S.Monti@iaea.org

Atoms for Peace and Development...